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APPENDIX A TECHNICAL GUIDE TO SIMETAR 
 
 The Simetar Add-in to Excel contains more than 100 functions written in VBA to 
perform mathematical and statistical operations to data.  The purpose of this Technical 
Appendix is to document most all of these functions. 
 
 Each Simetar function performs either a mathematical manipulation, a statistical 
test, or calculates a statistic used for data analysis, parameter estimation, simulation, or 
analysis of simulation results.  Each function is documented in a standard format which is 
 

• Brief description of the function 
• The mathematical equation behind the function 
• The name of the Simetar function and its parameter requirements 
• The reference for the mathematical equation 

 
This format of providing references for each of the functions is used throughout the 
Technical Appendix, even for simple statistics like mean and standard deviation. 
 
 Where possible Simetar uses existing Excel functions (e.g., mean, standard 
deviation, minimum, etc.), however, Simetar packages these functions into more 
complete tools and for that reason they are included here.  In some cases we developed 
functions to replace Excel functions because Excel limited the size of the problems that 
can be handled, e.g., Excel’s multiple regression would only handle 17 explanatory 
variables, far too few for a complex VAR model. 
 
 
SIMULATION 
 
 The simulation features in Simetar enable the user to perform stochastic 
simulations in Excel.  Stochastic simulations use the interactions of random variables in a 
system to analyze the uncertainty in that system and its performance under alternative 
situations.  Simetar functions allow the user to define and estimate distributions for 
random variables and to randomly sample those distributions so probabilistic outcomes 
for the system can be modeled.  Simetar also provides useful tools to analyze the 
probabilistic outcomes generated from a stochastic simulation. 
 
Pseudo Random Number Generation 
 
 Stochastic simulations rely on the generation of random numbers.  Computers 
cannot generate truly random numbers but can generate so called “pseudo” random 
numbers.  A pseudo random number sequence is one that cannot be differentiated from a 
truly random number sequence using statistical tests and thus are referred to as random 
numbers.  There are several algorithms used by computer programs to generate random 
numbers.  All of these algorithms require an initial random number seed to generate a 
sequence of random numbers.  One of the most common algorithms used is the 
congruential method.  The steps of the congruential method are as follows 
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U(0,1) pseudo random number
User defined random number seed
The largest possible integer that a computer can store
A fixed integer
A fixed integer

 

 
The congruential method requires an initial random number seed (S1), which can be 
specified by the user in most computer programs, to generate the first random number 
(R1), from equation (1).  To generate the next random number in the sequence, a new 
seed is generated using equation (2).  In equation (2) Si+1 is the new seed generated using 
the constants a, b, and L and the previous seed Si.  Each Si+1 from equation (2) is 
subsequently entered into equation (1) to generate a sequence of random numbers.  
Simetar uses the internal random number generator in VBA, which is a modified 
congruential algorithm. 
 
Reference: 
 
 Feldman, Richard M. and Ciriaco Valdez-Flores (1996).  Applied Probability and 
Stochastic Processes.  Boston, Massachusetts PWS Publishing Company, pg 79-81. 
 
Inverse Transform Method 
 
 Random number algorithms generate uniform random numbers or U(0,1), 
however, we are not limited to using variables defined by uniform distributions.  To 
generate a sample of random variates from a continuous distribution F, the inverse-
transform method is used on the sample of U(0,1) numbers generated by the random 
number algorithm.  The modified algorithm for generating random numbers from 
continuous distributions using the inverse-transform method returns a random variate X 
from F(x) or 
 

(3)     X F R= −1b g  
where, 
 

            U(0,1) pseudo random number from equation (1)
 for any real number 

R
P X x F x x

=

≤ =b g b g  
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Intuitively the inverse transform method can be understood from its graphical 
representation with a CDF for a continuous distribution F(x) and U(0,1) random numbers 
R1 and R2 used to generate variates X1 and X2 
 

1 

0 x X X 

R 

R 

F(x) 

1 

1 

2 

2 

 
Simetar uses internal commands in VBA to perform the inverse-transform method on the 
U(0,1) random numbers generated by VBA to generate random numbers for numerous 
probability distributions. 
 
Reference: 
 
 Law, Averill M. and W. David Kelton (2000).  Simulation Modeling and 
Analysis.  New York McGraw-Hill, Incorporated, pg 440-448. 
 
Latin Hypercube Sampling 
 
 The most prevalent sampling technique for simulation modeling is Monte Carlo 
sampling.  Monte Carlo sampling is the direct application of deviates generated from a 
random number generator and the inverse transform method to sample from a given 
probability distribution.  When using Monte Carlo sampling it is necessary to use a large 
number of iterations to accurately recreate the desired probability distribution, or the 
problem of clustering may occur. 
 One way to avoid clustering is to use Latin Hypercube sampling.  The Latin 
Hypercube sampling technique divides the cumulative density function of the given 
probability distribution into N equal intervals on the probability scale, where N is the 
number of iterations to simulate.  The Latin Hypercube procedure then proceeds to 
randomly draw one value from each of the N intervals.  This stratified sampling of the 
cumulative density function recreates the probability distribution accurately with fewer 
iterations than is required when using Monte Carlo sampling.  Because of the gains in 
efficiency the simulation engine in Simetar uses Latin Hypercube sampling. 
 
Reference: 
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 McKay, M.D., W.J. Conover and R.J. Beckman (1979).  “A Comparison of Three 
Methods for Selecting Values of Input Variables in the Analysis of Output from a 
Computer Code.”  Technometrics.  21, 239-245. 
 
Probability Distributions 
 
 Simetar has the capability of simulating several different types of probability 
distributions using both Simetar and Excel functions for distributions.  The following is a 
brief description of the distribution functions available 
 

Bernoulli(p) 
 
Range          ,
Mean           
Variance      -

Mass                      

Simetar       = BERNOULLI _ ,

0 1

1

1 0 1 0 11

l q

b g
b g b g

b g

p
p p

f X x p p p x p

Conditional y

x x= = − = ≤ ≤−| ; , ;

Probabilit RandNumber

 

 

Beta(α1,α2) 
 
Range          ,

Mean           

Variance      

Density                   

Simetar        = BETADIST X,Alpha,Beta, ,

                    = BETAINV Probability,Alpha,Beta, ,

0 1

1
1 1 0 1 0

1

1 2

1 2

1 2
2

1 2

1 2
1 2

1 1
1 2

1 2

α
α α

α α
α α α α

α α
α α

α αα α

+

+ + +

= − ≤ ≤ >− −

b g b g
b g b g b g

b g
b g

f x x x x| ,
,

; ; ,
Β

A B

A B

 

 

Binomial(t,p) 
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Range          ,
Mean           
Variance      

Mass                 

Simetar       = BINOMDIST Number_ s,Trials,Probability_ s,Cumulative

0 1

1

1 0 1

, ,

| , ; , , ,

t
tp
tp p

f X x t p
t
x

p p x tx t x

l q

b g
b g b g

b g

−

= =
F
HG
I
KJ − ∈−

 

 

Empirical(i,i+1,…,j) 
 
Range          ,

Mean           i + j
2

Variance      
j - i +1

Mass                  i, i +1, , j

Simetar       = EMPIRICAL Values, ,

i i j

f X x i i j
j i

x

, ,

| , , , ;

+

−

= + =
− +

∈

1

1
12

1 1
1

2

l q

b g

b g
b gProbabilities RandNumber

 

 

Exponential(β) 
 
Range          ,
Mean            
Variance      

Density               0      > 0

Simetar       = EXPONDIST X, Lamda,Cumulative

2

0

1

∞

= ≤ ≤ ∞−

β

β

β
β

ββf x e xx| ; ;b g
b g

 

 

Gamma(α,β) 
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Range          ,
Mean           
Variance      

Density                   

Simetar       = GAMMADIST X,Alpha,Beta,Cumulative

                   = GAMMAINV Probability,Alpha,Beta

2

0

1 0 01

∞

= ≤ ≤ ∞ >− −

αβ

αβ

α β
α β

α βα
α βf x x e xx| , ; ; ,b g b g

b g
b g

Γ
 

 

Hypergeometric(N,M,K) 
 
Range          max 0,N + M - K

Mean           

Variance      

Mass                      

                         
Simetar
= HYPGEOMDIST Sample_ s,Number_ sample, Population_ s, Number_ pop

b gm r

b gb g
b g

b g

b g

b g

,min ,

| , , ; , , , ;

; , ,

N K

KM
N

KM
N

N M N K
N N

f X x N M K

M
x

N M
K x

N
K

x K

M N K x M N M K

− −
−

= =

F
HG
I
KJ

−
−

F
HG

I
KJ

F
HG
I
KJ

∈

− − ≤ ≤ ≥

1

0 1

0

 

Lognormal(µ,σ2) 
 
Range          ,

Mean           

Variance      

Density              

                         
Simetar       = LOGINV Probability,Mean,Standard_ dev

                   = LOGNORMDIST X,Mean,Standard_ dev

+ 2

2

2

2

2

2

0

1

1
2 2

0

0

2

2

2

2

∞

−

=
− −

≤ ≤ ∞

− ∞ ≤ ≤ ∞ >

+

e

e e

f x
x

e
x

x

µ σ

µ σ σ

µ σ
πσ

µ
σ

µ σ

e j

c h b g

b g
b g

| ,
ln

; ;

;
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Normal(µ,σ2) 
 
Range          ,
Mean           
Variance      

Density                   

Simetar       = NORM Mean,StanDev,

                   = NORMDIST X,Mean,Standard_ dev,Cumulative

                   = NORMINV Probability,Mean,Standard_ dev

                   = NORMSDIST Z

                   = NORMSINV Probability

2

2

2

2
2

−∞ ∞

= − ∞ ≤ ≤ ∞ >
− −

µ

σ

µ σ
πσ

µ σµ σf x e xx| , ; , ;c h
b g
b g
b g
b g
b g

b g e j1
2

0
2 2

RandNumber  

 

Poisson(λ) 
 
Range          
Mean           
Variance      

Mass                       

Simetar       = POISSON X,Mean,Cumulative

0 1

0 1 0

, ,

|
!

; , , ;

l q

b g
b g

λ
λ

λ λ λ
λ

f X x e
x

x
x

= = ∈ ≤ < ∞
−

 

 

Uniform(a,b) 
 
Range          ,

Mean           

Variance      

Density              

Simetar       = UNIFORM ,

a b
a b

b a

f x a b
b a

a x b

+

−

=
−

≤ ≤

2

12
1

2b g

b g
b g

| , ;

Lower_Value Upper_Value

 

 

Weibull(α,β) 
 



A8 

Range          ,

Mean           

Variance      

Density                   

Simetar       = WEIBULL X,Alpha,Beta,Cumulative

2

2

0

1

2 2 1 1

0 0

2

1

∞

F
HG
I
KJ

F
HG
I
KJ −

F
HG
I
KJ

L
NM
O
QP

R
S|
T|

U
V|
W|

= ≤ ≤ ∞ >− − −

β
α α

β
α α α α

α β αβ α βα α β α

Γ

Γ Γ

f x x e xx| , ; ; ,b g
b g

b g

 

 
Reference: 
 
 Law, Averill M. and W. David Kelton (2000).  Simulation Modeling and 
Analysis.  New York McGraw-Hill, Incorporated, pg 299-326 
 
Correlating Random Deviates 
 
 Computer based random number algorithms generate independent series of 
pseudo random numbers, however, independent deviates are not suitable for modeling 
random variables with multivariate probability distributions.  An effective method of 
modeling the relationships between random variables in a simulation model is the 
correlation of computer generated random numbers.  The correlation coefficients from 
correlated random deviates are not statistically different than the correlation coefficients 
from the multivariate distributions used to generate the deviates. 

In Simetar, random deviates are correlated using the Choleski decomposition of 
the specified correlation matrix.  The Choleski decomposition is an algorithm for the 
square root method of factoring a positive definite matrix Snxn into an upper triangular 
matrix Tnxn such the S=TT’.  To correlate random deviates a factored correlation matrix T 
is multiplied with an nx1 column vector of independent standard normal deviates yielding 
an nx1 column vector of correlated standard normal deviates.  A mathematical 
description of this procedure is as follows 
 

CSND T ISND
c
c

c

t t t
t t

t

i
i

i

nx nxn nx

n

n

n

nn n

1 1

1

2

11 12 1

22 1

1

20

0 0

= ⋅

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
 

 
where, 
 
CSND nx

T nxn
ISND nx

=
=
=

an  column vector of correlated standard normal deviates distributed N(0,1)
        an  factored correlation matrix
 an  column vector of independent standard normal deviates

1

1
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The row number of each of the correlated standard normal deviates corresponds to the 
row number of the correlation matrix and must be applied to the random variable 
associated with that row in the correlation matrix.  The correlated standard normal 
deviates can be converted to uniform deviates and used to simulate any distribution by 
applying the inverse-transform method. 
 
 Simetar has functions that allow the user to correlate random numbers and return 
either correlated standard normal deviates or correlated uniform standard deviates.  The 
Simetar functions for correlating random deviates are as follows 
 
=CSND(Matrix_Range,NormalDeviate_Range,MatrixRow) 
 
=CUSD(Matrix_Range,NormalDeviate_Range,MatrixRow) 
 
Nesting the CUSD function inside any of the distribution functions previously specified 
will return correlated values for the given distribution. 
 
Reference: 
 
 Richardson, James W., Steven L. Klose and Allan W. Gray (2000).  “An Applied 
Procedure for Estimating and Simulating Multivariate Empirical (MVE) Probability 
Distributions In Farm-Level Risk Assessment and Policy Analysis.”  Journal of 
Agricultural and Applied Economics.  32, 299-315. 
 
 
REGRESSION ANALYSIS 
 
 Ordinary least squares (OLS) is a technique commonly used in quantitative 
modeling for analysis and prediction.  The general specification of the OLS model is as 
follows 
 

Y X X Xt t t k kt t= + + + + +β β β β ε0 1 1 2 2  
where, 
 

   observation  of the dependent variable
observation  of the  independent or explanatory variable

  parameter estimated for the  explanatory variable 
  error or difference between the observed value and the predicted value for
         observation  of the dependent variable 

Y t
X t kth

kth X

t Y

t

kt

t kt

t

t

=
=
=
=

β
ε

 

 
It is also useful to present the matrix formulation for an OLS model 
 

Y X= +β ε  
where, 



A10 

Y

Y
Y

Y

X

X X
X X

X Xt

k

k

t kt k t

=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

1

2

11 1

12 2

1

0

1

1

2

1
1

1

                            β

β
β

β

ε

ε
ε

ε

 

 
The estimated OLS equation is represented as, 
 

y Xb e= +  
 
which defines a vector of residuals, 
 

e y Xb= −  
 
The least squares principle in estimating β, is to select b such that the residual sum of 
squares, e’e, is minimized.  The application of the least squares principle in a quantitative 
model is called regression analysis 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 69-72. 
 
 
Adjusted R-Squared 
 
 The Adjusted R-Squared is similar to the R-Squared, however, the Adjusted R-
Squared takes into account the number of independent variables in the regression.  The 
Adjusted R-Squared is useful when comparing the fit of two equations with the same 
dependent variable but a different number of explanatory variables.  The Adjusted R-
Squared test statistic is calculated as follows 
 

R
RSS n k

TSS n
2 1

1
1

= −
− +

−
b g
b g  

 
where, 
 

k + =1 total number of parameters  
 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 74. 
 
Akaike Information Criterion 
 



A11 

The Akaike Information Criterion is used in the selection of regressors.  A penalty 
for increasing the number of regressors is added to a transformation of the minimum 
residual sum of squares.  The Akaike Information Criterion is calculated as follows 
 

AIC RSS
n

k
n

= +
+

ln
2 1b g  

 
In Simetar the Akaike Information Criterion is calculated using the function  
 
=AIC(Depend_values,Indep_values,Constant,Regression_type,Restriction_vector). 
 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 74. 
 
Box-Cox Transformation 
 
 In order for the underlying assumptions of many statistical procedures to be valid 
the data must be normally distributed.  The Box-Cox transformation is a common power 
transformation used to normalize data and is defined as 
 

y
y

y

λ

λ

λ
λ

λ
=

−
≠

=

R
S|
T|

1      if 0

       if 0lnb g
 

 
The determination of λ is made using a maximum likelihood estimation.  For the 
transformed data the log-likelihood function is given by 
 

µ σ λ λ πσ
σ

µλ, , ln ln2

1

2
2

1

1
2

2 1
2

c h b g c h c h e jb g= − − − −
= =
∑ ∑y n yi
i

n

i
i

n

 

 
Maximizing over ( µ,σ2 ) for a fixed value of λ provides the equation 
 

L y n n
MAX i

i

n

λ λ πσ λb g b g c h b gc h= − − −
=
∑1

2
2

21

2ln ln  

 
where, 
 

σ λ λ λ2 2

1

1b g e jb g b g= −
=
∑n

y yi i
i

n

 

 
Using these equations, λ is estimated by iteratively approximating the λ that maximizes 
the equation 
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L y n
MAX i

i

n
∗

=

= − −∑λ λ σ λb g b g c h b gc h1
21

2ln ln  

 
In Simetar the Box-Cox Transformation is calculated with the function 
 
=BOXCOX(DataRange,PowerValue,ShiftToPlus) 
 
Reference: 
 
 Box, G. E. P. and D. R. Cox (1964).  “An Analysis of Transformations.”  Journal 
of the Royal Statistical Society. Series B (Methodological).  26, 211-252. 
 
Covariance Matrix for Estimated Coefficients 
 
 The Covariance Matrix for Estimated Coefficients returns a matrix with the 
variance of the coefficients on the diagonal and the covariance of coefficients as the off 
diagonal elements.  The covariance of the coefficients is a measure of the linear 
relationship between two coefficients.  The Covariance Matrix for Estimated Coefficients 
can be written as follows 
 

cov

var cov , cov ,
cov , var cov ,

cov , cov , var

b

b b b b b
b b b b b

b b b b b

k

k

k k k

b g
b g b g b g
b g b g b g

b g b g b g
=

L

N

MMMMM

O

Q

PPPPP

0 0 1 1

1 0 1 1

0 1

 

 
and is calculated as 
 

cov b X Xb g b g= ′ −σ 2 1  
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 224-226. 
 
Coefficient of Variation for the Regression 
 
 The coefficient of variation for the regression is a measure of the average error 
relative to the actual mean of the dependent variable.  The coefficient of variation for the 
regression is calculated as follows 
 

cv reg s
Y

b g = ×100  
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where, 
  standard error of the regressions =  

 
 
Confidence Interval 
 
 The dependant variable in an ordinary least squares estimation is distributed as 

y N Y y~ ,σd i  
Using the distribution of y a confidence interval can be estimated giving a lower and 
upper bound on y for which there is 100(1-α)% confidence that the true value Y lies in the 
estimated interval.  The confidence interval for y is estimated as 
 

CI y t sU L n k y, , /= ± − α 2  
 
where, 
 

CI
CI

s

U

L

y

=
=

=

upper bound of the confidence interval
lower bound of the confidence interval

  standard error of the estimate,  yσ
 

 
Reference: 
 
 Bowerman, Bruce L. and Richard T. O’Connell (1993).  Forecasting and Time 
Series an Applied Approach.  Pacific Grove, California Duxbury, pg 166-171. 
 
Durbin-Watson Test Statistic 
 
 The Durbin-Watson test statistic is a measure of first-order autocorrelation in the 
model.  The Durbin-Watson test statistic is calculated as follows 
 

DW
e e

e

t t
t

n

t
t

n=
− −

=

=

∑

∑

1
2

2

2

1

b g
 

 
where, 
 

DW
DW
DW

≅
<
>

2
2
2

 indicates error terms are not autocorrelated
 indicates positively autocorrelated error terms
 indicates negatively autocorrelated error terms

 

 
In Simetar the Durbin-Watson test statistic is calculated using the function  
 



A14 

=DW(Depend_Values,Indep_Values,Constant,Regression_Type,Restriction_Vector). 
 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 179-182. 
 
Elasticity at the Mean for Estimated Coefficients 
 
 The elasticity at the mean for the estimated coefficient is a measure of the percent 
change in the dependent variable with respect to a percent change in a given explanatory 
variable.  The elasticity at the mean for the estimated coefficient is calculated as 
 

η βx y i
ix

y, =  

 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 172-175. 
 
F-Test 
 
 The F-test for a multiple regression tests joint hypotheses about the elements of 
the column vector of true parameters β.  The F-test is calculated 
 

F
b b b

K
s s s s s=

− ′ −
−

β βb g b g b gcov
1

 

 
where, 
 

 Column vector of estimated coefficients excluding b
Column vector of hypothesized values for the true parameters excluding 

 Number of elements in the vectors  and 

0

0

b

K b

s

s

s s

=
=
=

β β
β

 

 
and F is distributed Fα,[(K),(T-K+1)].  In Simetar the null and alternative hypotheses are 
 

H Hs

K

s0

1

2
1

0
0

0

0: :β

β
β

β

β=

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP
≠          and           
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The null hypothesis is rejected at the 1-α level if the test statistic F is great than the 
critical value F[(K),(T-K+1)]. 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 365-368. 
 
Goldfeld-Quandt Test 
 

The Goldfeld-Quandt Test is used to test for heteroskedacity and is calculated as 
follows 
 

GQ =
σ
σ

1
2

2
2  

where, 
 

σ

σ
1
2

2
2

=

=

the variance of the first partition of data
the variance of the second partion of data

 

 
In Simetar the partitions for the Goldfeld-Quandt test are assumed to occur at the 
midpoint of the data with half of the observations in the first partition and half of the 
observations in the second partition.  The null hypothesis is that the variances of each 
partition are equal.  Reject H0 if GQ is greater than the 1-α quantile from the F 
distribution with (T1 – K1),(T2 – K2) degrees of freedom, where T is the number of 
observations in the given partition and K is the number of coefficients estimated for each 
partition. 
 
In Simetar the Goldfeld-Quandt test statistic is calculated using the function  
 
=GQ(Depend_Values,Indep_Values,Constant,Regression_Type,Restriction_Vector). 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 494-495. 
 
Mean Error Measures of Forecasting 
 

The Mean Absolute Percent Error is a measure of a model’s forecasting ability.  
The formulas used for calculating these statistics are as follows 
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MAPE
E Y

N

t t
t

N

= × =
∑

100% 1  

 
where, 
 

E tt = the forecast error for time period  
 
In general it is desirable to minimize the Mean Absolute Percent Error when selecting the 
best forecasting model. 
 
In Simetar the Mean Absolute Percent Error is calculated using the function  
 
=MAPE(Residuals,Y_Values). 
 
Reference: 
 
 Albright, S. Christian, Wayne L. Winston, and Christopher J. Zappe (2000).  
Managerial Statistics.  Pacific Grove, California Duxbury, pg 842-843. 
 
Observational Diagnostics 
 
 Simetar includes a suite of tools that perform observational Diagnostics for 
multiple regression models.  Observational Diagnostics are used to assess the quality and 
reliability of the data used to estimate the model.  In Simetar Observational Diagnostics 
are calculated using the function  
 
=DFBETA(Depend_Values,Indep_Values,Constant,Restriction_Vector,Obs_RestVector) 
 

Covariance Ratio 
 
 The Covariance Ratio shows the sensitivity of the covariance matrix to the 
deletion of rows from the X and Y matrices in the regression model.  The ratio compares 
the determinant of covariance matrix for the row deleted model with the determinant of 
covariance matrix for full model and is calculation as follows 
 

COVRatio
s i X i X i

s X X

T

T
=

−

−

2 1

2 1

b g b g b g
c h

 

 
where, 
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s i i
X
X i i

2 b g

b g

=

=

=

estimated variance with the th row deleted
matrix of independent variables for full model

matrix of independent variables for model with the th row deleted
 

 
A COVRatio near one indicates little to no change in the covariance matrix from the full 
model to the row deleted model.  If the absolute value of the COVRatio is not within the 
bounds of the calculated critical values the ith row is considered to be significant.  The 
critical value is calculated as 
 

COVRatio k
n icr = ±

−
1 3  

 
 Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980).  Regression 
Diagnostics.  John Wiley and Sons, Incorporated, New York, pg 22-24. 
 

DFBetas 
 

DFBetas are calculated to determine the influence of a single observation on the 
strength of the overall model.  DFBetas measure the effect of removing a row of data 
from the calculation of the regression.  DFBetas are calculated as 
 

DFBetas
b b i

s i X X
ij

j j

T
jj

=
−

−

b g
b g c h 1

 

 
where, 
 

    the th component of the column vector  of estimated coefficients for  

the estimated coefficient  when the th row of  and  are removed

  the estimated variance when the th row of  and  are removed

b j b

b i b i Y X

s i i Y X

j

j j

=

=

=

β

b g
b g

 

 
If the absolute value of the DFBetaij is larger than the calculated critical value the jth 
observation is considered to be significant.  The critical value is calculated as 
 

DFBeta k n icr = −  
 
where, 
 

k
n
i

=
=
=

number of estimated coeficients
number of observations
number of rows deleted
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 Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980).  Regression 
Diagnostics.  John Wiley and Sons, Incorporated, New York, pg 11-14. 
 

DFFit(s) 
 
 The DFFit(s) are a measure of the fit of the regression equation when the ith row 
is deleted from the matrices of independent and dependent variables.  DFFit uses the 
estimated standard error from the full model and is calculated as 
 

DFFit h e
h

i i

i

=
−1

 

 
where, 
 

e
h

i

i

=
=

residuals
leverage

 

 
An alternative calculation for measuring the fit is the DFFits, which uses the estimation 
of the standard error from the row deleted model and is calculated as 
 

DFFits h
h

e
s i h

i

i

i

i

=
−
L
NM
O
QP −1 1

1 2/

b g  

 
If the absolute value of the DFFit is larger than the calculated critical value the ith row is 
considered to be significant.  The critical value is calculated as 
 

DFFit k
n icr =

−
2  

 
 Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980).  Regression 
Diagnostics.  John Wiley and Sons, Incorporated, New York, pg 14-16. 
 

Leverage 
 
 The least squares projection matrix or the hat matrix determines the predicted 
values of a regression model.  The diagonal elements of the hat matrix or Leverage can 
be used to measure the effect that the individual observations of the dependant variable 
have on the corresponding estimation of that observation.  The hat matrix is calculated as 
 

H X X X XT T=
−c h 1
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which has the following relationship to the estimation of the dependant variable 
 

y Xb Hy≡ =  
 
Leverage measures the influence of the actual value of a data point for the dependent 
variable on the predicted value.  If the absolute value of the Leverage is larger than the 
calculated critical value the ith observation is considered to be significant.  The critical 
value for determining Leverage is calculated as 
 

2k n i−b g  
 
 Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980).  Regression 
Diagnostics.  John Wiley and Sons, Incorporated, New York, pg 16-18. 
 

Studentized Residuals 
 
 In order to better detect problematic data it is common to standardize residuals by 
dividing the residuals by their estimated standard error.  The estimated variance of the 
residuals is commonly calculated as 
 

var e s hi ib g b g= −2 1  
 
where, 
 

e
s
h

i

i

=

=
=

estimated residuals
estimated variance of the model
leverage

2  

 
In an observational diagnostics modeling environment the estimated variance can be 
calculated as 
 

s i
n k

y x b ij j
j i

2 21
1

( ) =
− −

−
≠

∑ b g  

 
where, 
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s i i
y
x
n
k

2 b g =
=
=
=
=

estimated variance with the th row deleted
     dependant variable
     independant variable
     number of observations
     number of parameters estimated

 

 
Using this new calculation for variance standardized residuals are referred to as 
Studentized Residuals and are calculated as 
 

e e
s i hi

i

i

∗ =
−b g 1

 

 
In many modeling situations the Studentized Residuals are distributed as a t distribution.  
Using a large sample approximation the critical value for the Studentized Residuals can 
be approximated as two.  If the absolute value of the Studentized Residual is larger than 
two value the ith observation is considered to be significant. 
 
Reference: 
 
 Belsley, David A., Edwin Kuh, and Roy E. Welsch (1980).  Regression 
Diagnostics.  John Wiley and Sons, Incorporated, New York, pg 18-20. 
 
Partial Correlation Coefficient 
 

The Partial Correlation Coefficient is a measure of the linear relationship between 
two variables while holding a third variable constant.  The Partial Correlation Coefficient 
is calculated as follows 
 

ρ
ρ ρ ρ

ρ ρ
yx t

yx yt xt

xt yt

.
( )( )

=
−

− −1 12 2
 

where, 
 

ρ

ρ

ρ

yx

yt

xt

y x
y t
x t

=

=

=

the correlation coefficient of  and 
the correlation coefficient of  and 
the correlation coefficient of  and 

 

 
In Simetar the Partial Correlation Coefficient is calculated using the function  
 
=PARTIALCORREL(Depend_Values,Indep_Values,Indep_Index,Indep_Remove, 
  Restriction_Vector). 
 
Reference: 
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 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 211-213. 
 
Prediction Interval 
 
 The standard deviation σY of the true parameter Y is estimated as the standard 
error of the estimate sy, which can be decomposed algebraically into two components as 

s s hy t=  
The point estimate of σ Y yt t−b g  is called the standard error of the prediction error and is 
calculated as 

s s hY y tt t− = +b g 1  

Using the standard error of the prediction error a 100(1-α)% prediction interval can be 
estimated for the forecasted value of y in time t.  The prediction interval is calculated as 
 

PI y t s hU L t n k t, , /= ± +− α 2 1  
 
where, 
 

PI
PI

U

L

=
=

upper bound of the prediction interval
lower bound of the prediction interval

 

 
Reference: 
 
 Bowerman, Bruce L. and Richard T. O’Connell (1993).  Forecasting and Time 
Series an Applied Approach.  Pacific Grove, California Duxbury, pg 166-171. 
 
R-Squared 
 
 The R-Squared test measures the proportion of the variance in the dependent 
variable Y attributable to the variance in the independent variables X.  The R-Squared test 
statistic is calculated as follows 
 

R e e
y y nY

2
21= −

′
′ −

 

 
where, 
 

′ − =y y nY 2 Total Sum of Squares (TSS)  
 
Reference: 
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 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 74. 
 
Rho 
 
 The most common procedure for modeling a system with autocorrelation is a 
first-order autoregressive process or an AR(1).  In an AR(1) process the error in time t is 
lagged on the error in t-1 which yields the equation 
 

e et t t= +−ρ ε1  
 
where, 
 

e t y Xb e
e

t

t

t

= = +
=
=

Error term in time  from a regression model  
Parameter rho that determines the properties of 
Independent disturbances for the AR(1) process

ρ
ε

 

 
The parameter rho can be calculated from the regression equation y=Xb+e as 
 

ρ ε
=

−

−

e
e

t t

t 1

 

 
where, 
 

ρ
ρ
ρ

≅
<
>

0
0
0

 indicates error terms are not autocorrelated
 indicates negatively autocorrelated error terms
 indicates positively autocorrelated error terms

 

 
In Simetar the parameter rho is calculated using the function  
 
=RHO(Depend_Values,Indep_Values,Constant,Regression_Type,Restriction_Vector). 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 536-538. 
 
Schwarz Information Criterion 
 
 The Schwarz Criterion is used in the selection of lags for an AR(p) process.  A 
penalty for increasing the number of lags is added to a transformation of the minimum 
residual sum of squares.  The Schwarz Criterion is calculated as follows 
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SC RSS
n

k
n

n= +ln ln  

 
In Simetar the Schwarz Criterion is calculated using the function  
 
=ARSCHWARZ(Y_Values,Constant,NumDifferences). 
 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 74. 
 
Semi-Partial Correlation Coefficient 
 

The Semi-Partial Correlation Coefficient is a measure of the linear relationship 
between two variables controlling for the effect that a third variable has on only one of 
the other variables.  The Semi-Partial Correlation Coefficient is calculated as follows 
 

ρ
ρ ρ ρ

ρ
y x t

yx yt xt

xt

( . ) =
−

−1 2c h
 

where, 
 

ρ

ρ

ρ

yx

yt

xt

y x
y t
x t

=

=

=

the correlation coefficient of  and 
the correlation coefficient of  and 
the correlation coefficient of  and 

 

 
In Simetar the parameter Semi-Partial Correlation Coefficient is calculated using the 
function  
 
=SEMIPARTIALCORREL(Depend_Values,Indep_Values,Indep_Index,Indep_Remove, 
  Restriction_Vector). 
 
Reference: 
 
 Kerlinger, Fred N. and Elazar J. Pedhazur (1973).  Multiple Regression in 
Behavioral Research.  NewYork Holt, Rinehart and Winston, Incorporated, pg 92-93. 
 
Standard Error of the Coefficient 
 
 The standard error option in Simetar’s simple regression tool returns the standard 
error for the estimated coefficient b1.  The coefficients estimated with OLS are distributed 
 

b N x~ ,β σ 2 2∑d i  
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where, 
 

σ 2 2x∑ = standard error of the coefficient  
 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, 25-26 
 
Standard Error of the Regression 
 
 The standard error of the regression is the square root of s2, an unbiased estimate 
for disturbance variance, σ2.  The standard error of the regression is calculated as follows 
 

s e e
n k

=
′

− +1
 

 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated pg 89. 
 
T-test 
 
 The t-test is a measure of the difference between the estimated parameter b and a 
hypothesized value of the true parameter β.  The t-test is calculated 
 

t b

x
i i

i

=
−

∑
β

σ 2 2
 

 
where t is distributed tα(n-2).  In Simetar the null and alternative hypotheses are 
 

H Hi i0 10 0: :β β= ≠          and           
 
The null hypothesis is rejected at the 1-α level if the test statistic t is great than the 
critical value tα(n-2). 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 363-365. 
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CORRELATION 
 
 In quantitative modeling it is often important to summarize the relationship 
between variables.  The correlation matrix tool in Simetar is a useful way of summarizing 
the relationship between two variables both parametrically and non-parametrically. 
 
Covariance 
 
 The Covariance measures the direction and strength of the linear relationship 
between two variables.  The Covariance is calculated as follows 
 

cov ,X Y
X X Y Y

n

i i
i

n

b g
c hc h

=
− −

−
=
∑

1

1
 

 
The value of the Covariance is dependent on the units of the variables.  The Covariance 
of a variable against itself is the variance. 
 
The Covariance is calculated using the function 
 
=COVAR(Array1,Array2) 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 42-46. 
 
Hypothesis Test for Spearman’s Rho 
 
 The hypothesis test for Spearman’s Rho is a measure of the difference between 
the estimated rank correlation coefficient ρ and 0.  Simetar uses the normal 
approximation of the hypothesis test for Spearman’s Rho, which is calculated as follows 
 

z np = −ρ 1  
 
where z is distributed zp.  In Simetar the null and alternative hypotheses are 
 

H Hi i0 10 0: :β β= ≠          and           
 
The null hypothesis is rejected at the p level if the test statistic z is great than the critical 
value zp. 
 
Reference: 
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 Conover, W. J. (1999).  Practical Nonparametric Statistics.  New York John 
Wiley and Sons, Incorporated, pg 314-319. 
 
Pearson’s Product Moment Correlation Coefficient 
 
 Pearson’s Product Moment Correlation Coefficient measures the direction and 
strength of the linear relationship between two variables.  Pearson’s Product Moment 
Correlation Coefficient is calculated as follows 
 

ρ =
− −

− −

=

= =

∑

∑ ∑

X X Y Y

X X Y Y

i i
i

n

i
i

n

i
i

n

c hc h

c h c h
1

2

1

2

1

 

 
One of the advantages of Pearson’s Product Moment Correlation Coefficient is that it is a 
unitless quantity that falls between –1 and +1. 
 
Pearson’s Product Moment Correlation Coefficient is in Simetar calculated using the 
function 
 
=CORREL(Array1,Array2). 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 42-46. 
 
Rank Correlation Coefficient (Spearman’s Rho) 
 
The Rank Correlation Coefficient given by Spearman (1904) is an alternative to 
Pearson’s product moment correlation coefficient.  Unlike Pearson’s Product Moment 
Correlation Coefficient, Spearman’s Rho does not depend on the bivariate distribution of 
(X, Y).  Spearman’s Rho requires bivariate data that is of at least an ordinal scale.  Data 
used for calculating Spearman’s Rho is ranked and the test statistic is calculated as 
follows 
 

ρ =
−

+F
HG
I
KJ

−
+F
HG
I
KJ

F
HG

I
KJ −

+F
HG
I
KJ

F
HG

I
KJ

=

= =

∑

∑ ∑

R X R Y n n

R X n n R Y n n

i i
i

n

i
i

n

i
i

n

( ) ( )

( ) ( )

1
2

1
2

1
2

2

1

2
2

1

2
2

1

 

where, 
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R X i X
R Y i Y

n

i

i

( )
( )

=
=
=

the rank of the th observation of the random variable 
the rank of the th observation of the random variable 

      the total number of observations
 

 
In Simetar Spearman’s Rho is calculated using the function  
 
=RANKCORREL(Array1,Array2). 
 
Reference: 
 
 Conover, W. J. (1999).  Practical Nonparametric Statistics.  New York John 
Wiley and Sons, Incorporated, pg 314-319. 
 
T-test for the Correlation Coefficient 
 
 The t-Test for the Correlation Coefficient is a measure of the difference between 
the estimated correlation coefficient ρ and 0.  The t-test is calculated 
 

t n
=

−
−

ρ
ρ
2

1 2  

 
where t is distributed tα(n-2).  The null and alternative hypotheses are 
 

H Hi i0 10 0: :β β= ≠          and           
 
The null hypothesis is rejected at the 1-α level if the test statistic t is greater than the 
critical value tα(n-2). 
 
Reference: 
 
 Vose, David (2000).  Risk Analysis.  New York John Wiley and Sons, Limited, pg 
53-55. 
 
 
MATRIX OPERATIONS 
 
 Deriving the solution to linear sets of equations is often required in quantitative 
modeling.  A useful methodology in the solution of these types of problems is the 
arrangement of equations in matrices.  Simetar contains several useful features to assist 
the user in manipulating matrices for the solution of linear systems. 
 
Determinant of a Matrix 
 
 For any square matrix A there exists a scalar representation of A denoted det(A).  
The determinant is used for determining whether or not a matrix is singular.  If det(A) = 0 
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then A is singular.  A singular matrix contains two or more rows that are linearly 
dependent.  A system of equations that are linearly dependent does not have a unique 
solution. 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 84-107. 
 
Factoring a Matrix using the Choleski Decomposition 
 

The Choleski Decomposition is an algorithm for the square root method of 
factoring a positive definite matrix, S, as an upper triangular matrix T such that S = TT’.  
The detailed description of the matrices is as follows 
 

S TT
s s s
s s s

s s s

t
t t

t t

t t t
t t

t

p

p

p p pp p p

p

p

pp

= ′

L

N

MMMM

O

Q

PPPP
=

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP

11 12 1

21 22 2

1 2

11

12 22

1 2

11 12 1

22 2

0 0
0

0

0

0 0

 

 
The Simetar function for factoring a positive definite matrix using the Choleski 
Decomposition is 
 
=MSQRT(Matrix,StartRow,EndRow) 
 
Reference: 
 
 Graybill, Franklin A. (1976).  Theory and Application of the Linear Model.  North 
Scituate, Massachusetts Duxbury Press, pg 231. 
 
Inner Product 
 
 The inner product of any given vectors x and y on a vector space V assigns a real 
number to the vectors x and y.  The inner product is calculated as 
 

x y x yT, =  
 
The inner product can also be calculated with a vector w of weights calculated as 
 

x y x y wi i i
i

n

, =
=
∑

1

 

 
In Simetar the inner product is calculated using the function  
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=MIP(Matrix1,Matrix2). 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 217. 
 
Inverse of a Matrix 
 
 The multiplicative inverse of any real number a is denoted as a-1 where 
 

aa− =1 1 
 
There also exists a multiplicative inverse of any nonsingular square matrix A such that 
 

AA I− =1  
 
where, 
 

I =

L

N

MMMM

O

Q

PPPP

1 0 0
0 1 0

0 0 1

  is called the identity matrix  

 
The matrix A-1 is referred to as the inverse of A. 
 
The Inverse of a matrix can be calculated using the function 
 
=MINVERSE(Array) 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 48-49. 
 
Kronecker Product 
 
 The Kronecker Product is a specialized form of matrix multiplication.  For two 
matrices Amxn and Bpxq the Kronecker Product A⊗B yields an MP×NQ matrix calculated 
as follows 
 



A30 

            A

a a a
a a a

a a a

B
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b b b

b b b
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q

⊗ =

11 11 11 12 11 1 12 11 12 12 12 1 1 11 1 12 1 1

1 21 11 22 11 2 12 21 12 22 12 2 1 21 1 22 1 2

11 1 11 2 11 12 1 12 2 12 1 1 1 2 1

21 11 21 12 21 1 22 11 22 12 22 1 2 11 2 12 2 1

21 21 21 22 21 2 22 21 22 22 22 2 2 21 2 22 2 2

21 1 21 2 21 22 1 22 2 22 2 1 2 2 2

1 11 1 12 1 1 2 11 2 12 2 1 11 12

b a b a b a b
a b a b a b a b a b a b a b a b a b

a b a b a b a b a b a b a b a b a b

a b a b a b a b a b a b a b a b

q n n n q

q q n n n q

p p pq p p pq n p n p n pq

m m m q m m m q mn mn a b
a b a b a b a b a b a b a b a b a b

a b a b a b a b a b a b a b a b a b

mn q

m q m m m q mn mn mn q

m p m p m pq m p m p m pq mn p mn p mn pq

1

21 21 22 22 1 2 2 21 2 22 2 2 21 22 2

1 1 1 2 1 2 1 2 2 2 1 2

L
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O
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where, 
 

A B A B⊗ = Kronecker Product of matrix  and matrix  
 
In Simetar the inner product is calculated using the function  
 
=MKRON(Matrix1,Matrix2). 
 
Reference: 
 
 Bronson, Richard (1989).  Theory and Problems of Matrix Operations.  New 
York McGraw-Hill, Incorporated, pg 165. 
 
Matrix Multiplication 
 
 A matrix A can be multiplied to a matrix B represented AB if the number of 
columns in A equals the number of rows in B.  The matrix AB is calculated as 
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O

Q

PPPP
 
Matrices can be multiplied in Simetar using the function 
 
=MMULT(Array1,Array2) 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 38-40. 
 
Matrix Orthogonalization 
 
 Simetar uses the Gram-Schmidt Process to calculate an orthonormal basis Q for a 
given square matrix A.  The properties of an orthonormal basis are 
 

X X I
X X
Qx Qy x y

Qx x

T

T

=

=

=

=

−1

2 2

, ,
 

 
In Simetar the orthonormal basis is calculated using the function  
 
=MORTH(Matrix1). 
 
Reference: 
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 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 241-243. 
 
Norm of a Vector 
 
 For any vector v the norm of v is given as 
 

v v v= ,  
 
where, 
 

v v

v v v

=

=

norm of 

innerproduct of the vector ,
 

 
In Simetar the Norm of a Vector is calculated using the function  
 
=MNORM(Matrix1). 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 222-224. 
 
Rank of a Matrix 
 
 The rank of any given matrix A is the dimension of the row space of A.  The 
dimension of the row space of A is the number of rows in the row echelon form of A that 
have nonzero entries.  Determining the rank of a matrix indicates whether or not the row 
vectors in the matrix are linearly dependent. 
 
In Simetar the Rank of a Matrix is calculated using the function 
 
=MRANK(Matrix1) 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 154. 
 
Row Echelon Form Matrix 
 
 One method for solving a linear system of equations is to arrange the system as a 
matrix and reduce the matrix to row echelon form.  Three conditions must hold for a 
matrix to be in row echelon form: 
 

1. The first nonzero entry in every row is a 1. 
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2. If the kth row does not consist entirely of zeros, then the number of leading zeros 
in row k must be greater than the number of zeros in row k-1. 

3. Any row that consists entirely of zero must be below all rows with nonzero 
entries. 

 
In Simetar the row echelon form of a matrix is calculated using the function  
 
=MREDUCE(Matrix1). 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 154. 
 
Trace of a Square Matrix 
 
 The Trace of a Square Matrix A is the sum of the diagonal elements in A and 
denoted as tr(A). 
 

tr A a i jij
j

n

i
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b g = =
==

∑∑
11

  for all  

 
where, 
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1 2

  column of the matrix 
  row of the matrix 

 

 
In Simetar the Trace of a Square Matrix is calculated using the function  
 
=MTRACE(SquareMatrix). 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 288. 
 
Transpose of a Matrix 
 
 The transpose of any n x m matrix A is an m x n matrix AT represented as 
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  A

a a a
a a a

a a a

A

a a a
a a a

a a a

m

m

n n nm

T

n

n

m m nm

=

L

N

MMMM

O

Q

PPPP

=

L

N

MMMM

O

Q

PPPP

11 12 1

21 22 2

1 2

11 21 1

12 22 2

1 2

 

 
The Transpose of a Matrix can be calculated using the function 
 
=TRANSPOSE(Array) 
 
Reference: 
 
 Leon, Steven J. (1998).  Linear Algebra with Applications.  Upper Saddle River, 
New Jersey Prentice Hall, Incorporated, pg 50. 
 
 
STOCHASTIC DOMINANCE AND CERTAINTY EQUIVALENCE 
 
 Stochastic Dominance is a methodology based on expected utility maximization 
that has been developed to analyze risky alternatives.  Risky alternatives are evaluated 
with Stochastic Dominance using the weakest possible assumption about the decision 
maker’s expected utility function.  However, as the degree of Stochastic Dominance 
increases the assumption on risk preference become stronger. 
 
Certainty Equivalence 
 
 Certainty Equivalence is the minimum amount of money a decision maker would 
require as a lump sum payment to forgo a risky alternative, thus the decision maker is 
indifferent between the certainty equivalent and the future payoff of the risky alternative.  
The value of the certainty for any given risky alternative is dependent upon the expected 
utility function of the decision maker and the decision maker’s level of risk aversion.  
Due to the difficulty in measuring a decision maker’s expected utility function it is 
common to assume an exponential utility function.  The formula for calculating Certainty 
Equivalence with an exponential utility function is 
 

E U p e

CE
E U

RAC

i
RAC X

i

ib g e j
b gc h

b g= −

= −

− +∑ ω

ω    
ln
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where, 
 

    certainty equivalence
 expected utility
  risk aversion coefficient
       initial wealth

CE
E U
RAC

=

=

=
=

b g

ω

 

 
Another commonly assumed form for a decision maker’s expected utility function is the 
power utility function.  The formula for calculating Certainty Equivalence with a power 
utility function is 
 

E U p X

CE E U

i i
RAC

i

RAC

b g b g
b g

b g

b gc h

= +

= −

−

−

∑ ω

ω

1

1 1    
 

 
where, 
 

    certainty equivalence
 expected utility
  risk aversion coefficient
       initial wealth

CE
E U
RAC

=

=

=
=

b g

ω

 

 
For both assumptions of the form of the expected utility function the Certainty 
Equivalence can be analyzed at varying levels of risk aversion.  The value of the Risk 
Aversion Coefficient can be interpreted as 
 

RAC
RAC
RAC

<
=
>

0
0
0

  risk loving
  risk indifferent
 risk averse

 

 
A stronger attitude toward risk is inferred as the absolute value of the RAC increases.  In 
Simetar Certainty Equivalence is calculated using the function  
 
=CERTEQ(DataList,Risk_Aversion_Coefficient,Utility_Function,Beginning_Wealth) 
 
Reference: 
 
 Clemen, Robert T. (1991).  Making Hard Decisions.  Boston PWS-Kent 
Publishing Company, pg 371-375. 
 
Confidence Premiums 
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 Confidence Premiums are the lower and upper bounds of certainty equivalence on 
a given risky alternative.  The upper and lower bounds of certainty equivalence are 
determined by using the upper and lower bounds on the risk aversion coefficient that a 
decision maker may have.  Confidence premiums give you a range of values for which a 
decision maker would be indifferent between receiving that value as a lump sum and 
receiving the futures payoff of a risky alternative. 
 
Reference: 
 
 Mjelde, James W. and Mark J. Cochran (1988).  “Obtaining Lower and Upper 
Bounds on the Value of Seasonal Climate Forecasts as a Function of Risk Preferences.”  
Western Journal of Agricultural Economics.  12, 285-293. 
 
First, Second, and Third Degree Stochastic Dominance 
 
 The assumption made on the expected utility function for First Degree Stochastic 
Dominance is that the decision maker has a positive marginal utility.  For two alternatives 
A and B, A is first degree stochastic dominant over B if 
 

F x F x xA Bb g b g≤   for all  with at least one strict inequality  
 
where, 
 

F x A

F x B
A

B

b g
b g

=

=

cumulative density function of alternative 

cumulative density function of alternative 
 

 
 The additional assumption made on the expected utility function for Second 
Degree Stochastic Dominance is that the decision maker is risk averse for all values of x, 
meaning the decision maker’s expected utility function is positive but has a decreasing 
slope.  For two alternatives A and B, A is first degree stochastic dominant over B if 
 

F x dx F x dx xA

x

B

x

b g b g
−∞ −∞
z z≤

* *

  for all  with at least one strict inequality*  

 
Third Degree Stochastic Dominance makes the additional assumption that the risk 

aversion coefficient is decreasing with income or wealth.   
 
Reference: 
 
 Hardaker, J. Brian, Ruud B.M. Huirne, and Jock R. Anderson (1997).  Coping 
With Risk in Agriculture.  New York CAB International, pg 146-149. 
 
Risk Aversion Coefficient 
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 One of the basic assumptions of expected utility theory is that given no risk more 
wealth is preferred to less wealth indicated by 
 

U W1 0b g b g >  
 
where, 
 

U W ithib g b g =  derivate of the utility function for wealth  
 
When risk is introduced a decision maker’s attitude toward risk can be represented by the 
second derivative of the utility function for wealth. 
 

U W

U W

U W

2

2

2

0

0

0

b g

b g

b g

b g
b g
b g

<

=

>

  risk averse

  risk indifferent

  risk loving

 

 
The measure of a decision maker’s risk aversion coefficient is called the risk aversion 
coefficient and defined as 
 

RAC
U W
U W

= −
2

1

b g

b g
b g
b g  

 
Reference: 
 
 Hardaker, J. Brian, Ruud B.M. Huirne, and Jock R. Anderson (1997).  Coping 
With Risk in Agriculture.  New York CAB International, pg 96-99. 
 
 
COMPARATIVE TESTS FOR DATA 
 
 Quantitative modeling often involves the statistical analysis of data.  Simetar 
includes comparative tests for data to evaluate the statistical properties of a given data 
series with another data series or a hypothesized statistical assumption. 
 
Anderson-Darling Test for Normality 
 
 The Anderson-Darling Test for Normality is based on the more general Anderson-
Darling goodness of fit test.  The Anderson-Darling Test measures the weighted distance 
between the empirical distribution of a function and the distribution of the hypothesized 
function.  The Anderson-Darling Test statistic is defined as 
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A i F X F X n nn i n i
i

n
2

1
1

2 1 1= − − + −
RST

UVW
F
HG

I
KJ −+ −

=
∑ b g b g b gd iln ln  

where, 
 

F x
X i

n
i

b g =
=
=

cumulative density function for the hypothesized distribution
    th order statistic of the empirical distribution
      total number of observations

 

 
In Simetar the H0 for the Anderson-Darling test is that the data are normally 

distributed.  Reject H0 at a level of significance α if it the test statistic An is greater than 
the 1-α quantile of the Anderson-Darling tables, which can be found in a statistics 
textbook. 
 
 In Simetar the Anderson-Darling Test for Normality is calculated using the 
function 
 
=NORMAD(Data_Range) 
 
Reference: 
 
 Law, Averill M. and W. David Kelton (1991).  Simulation Modeling and 
Analysis.  New York McGraw-Hill, Incorporated, pg 368-369. 
 
 
ANOVA 
 
 Analysis of Variance (ANOVA) is a statistical technique used to test the 
homogeneity hypothesis.  The homogeneity hypothesis is specified as 
 

H Ht t i0 1 2 1 1 2: :µ µ µ µ µ µ µ= = = ≠ ≠ ≠     vs.      ,  for at least one  
 
In Simetar ANOVA is calculated using the function  
 
=ANOVA(DataRange,…) 
 

Degrees of Freedom 
 

The degrees of freedom are calculated for the total model as N-1, for the 
treatments as t-1, and for the error as N-t. 
 
Reference: 
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 Tamhane, Ajit C. and Dorothy D. Dunlop (2000).  Statistics and Data Analysis 
From Elementary to Intermediate.  Upper Saddle River, New Jersey Prentice Hall, 
Incorporated, pg 360-361. 
 

F Test 
 

The test statistic for the homogeneity hypothesis in an ANOVA framework is the 
F statistic.  The F statistic is calculated as 
 

F MST
MSE0 =  

 
The null hypothesis is rejected with probability of Type I error α if  
 

F F t N t0 1> − −α , ,b g b g  
 
where, 
 

F F P F Ft N t t N tα α α, , , ,− − − −= ≥1 0 1b g b g b g b ge jcritical values from the  distribution for =   

 
Reference: 
 
 Tamhane, Ajit C. and Dorothy D. Dunlop (2000).  Statistics and Data Analysis 
From Elementary to Intermediate.  Upper Saddle River, New Jersey Prentice Hall, 
Incorporated, pg 360-361. 
 

Mean Square 
 

The mean square is calculated for the treatments and the error.  The mean square 
of the treatments is calculated as 
 

MST SST
t

=
−1

 

 
The mean square error is an estimate for the experimental error variance and is calculated 
as 
 

MSE SSE
N t

=
−

 

 
Reference: 
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 Tamhane, Ajit C. and Dorothy D. Dunlop (2000).  Statistics and Data Analysis 
From Elementary to Intermediate.  Upper Saddle River, New Jersey Prentice Hall, 
Incorporated, pg 360-361. 
 

Sum of Squares 
 

The sum of squares can be broken down and viewed in three components, total 
sum of squares, treatment sum of squares, and error sum of squares.  Total sum of 
squares measures the variability of the observations with respect to the overall mean and 
is calculated as 
 

SSTot y yij
j

r

i

t

= −
==

∑∑ ..d i2
11

 

 
where, 
 

t
r i
y j i
y

ij

=
=

=

=

number of treatments
number of observations in the th treatment

th observation in the th treatment
overall mean for all treatments..

 

 
Treatment sum of squares measures the variability between the treatment means and the 
overall mean and is calculated as 
 

SSTrt r y yi
i

t

= −
=
∑ . ..b g2

1

 

 
where, 
 

y ii. = mean for the th treatment  
 
Error sum of squares measures the variability between the observations within a 
treatment and the treatment mean and is calculated as 
 

SSE y yij i
j

r

i

t

= −
==

∑∑ .d i2
11

 

 
Reference: 
 
 Tamhane, Ajit C. and Dorothy D. Dunlop (2000).  Statistics and Data Analysis 
From Elementary to Intermediate.  Upper Saddle River, New Jersey Prentice Hall, 
Incorporated, pg 360-361. 



A41 

 
Chi-squared Test for Normality 
 

The Chi-Squared Test for Normality is based on the more general Chi-Squared 
test for goodness of fit, which measures how well the observed frequency of a random 
variable compares to the frequency of the hypothesized distribution.  The Chi-Squared 
test statistic is calculated as follows 
 

χ 2
2

=
−

∑
O i E i

E ii

( ) ( )
( )

l q  

where, 
 

E i i H
O i i

j

( )
( )

=
=
=

the expected number of observations in the th histogram bin when  is true
the number of observations in the th histogram bin

      the total number of bins selected

0

 

 
In Simetar the H0 for the Chi-Squared test is that the data are normally distributed.  

The parameters of the hypothesized normal distribution, mean and standard deviation, are 
estimated in Simetar using the observed data.  Reject H0 if χ2 is greater than the 1-α 
quantile from the chi-squared distribution with j-3 degrees of freedom (in the generalized 
Chi-Squared test j-1-k degrees of freedom are used, where k is the number of parameters 
estimated for the hypothesized distribution). 
 

In Simetar the Chi-Squared Test for Normality is calculated using the function  
 
=NORMCHI(Data_Range,Intervals) 
 
Reference: 
 
 Conover, W. J. (1999).  Practical Nonparametric Statistics.  New York John 
Wiley and Sons, Incorporated, pg 239-243. 
 
Chi-squared Test on Variance 
 
 The hypothesis test in Simetar to determine if the sample variance of a data series 
is equal to a hypothesized parameter variance is the chi-squared test.  The chi-squared 
test is calculated as 
 

χ
σ

2
2

0
2

1
=

−n sb g  

 
where, 
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  number of observations
 observed sample variance

hypothesized value for the parameter variance

n
s

=

=

=

2

0
2σ

 

 
 In Simetar the two sided chi-squared test is used with H0 that the sample variance 
is equal to the hypothesized parameter variance.  The H0 is rejected at a level of 
significance 1-α if the chi-squared test is greater than χ2

n-1,α/2 or if the chi-squared test is 
less than χ2

n-1,1-α/2. 
 
Reference: 
 

Tamhane, Ajit C. and Dorothy D. Dunlop (2000).  Statistics and Data Analysis 
From Elementary to Intermediate.  Upper Saddle River, New Jersey Prentice Hall, 
Incorporated, pg 256-257. 
 
F-test 
 
 The F-test is used to determine whether or not two sets of data have statistically 
different variances.  The F-test is calculated as 
 

F =
σ
σ

larger

smaller

2

2  

 
In Simetar the H0 for the F-test is that the sample variances of the two data series 

are not statistically different.  Reject H0 at a level of significance α if it the test statistic is 
greater than the 1-α quantile of the F distribution. 
 
Reference: 
 
 Albright, S. Christian, Wayne L. Winston, and Christopher J. Zappe (2000).  
Managerial Statistics.  Pacific Grove, California Duxbury, pg 516-517. 
 
Kolmogorov-Smirnov Test for Normality 
 

The Kolmogorov-Smirnov Test for Normality is based on the more general 
Kolmogorov-Smirnov test for goodness of fit.  The Kolmogorov-Smirnov test compares 
the empirical distribution of a given function to the hypothesized distribution.  A 
comparison of the maximum vertical distance between the cumulative distribution of the 
data and the cumulative distribution of the hypothesized function is used to calculate the 
test statistic.  The Kolmogorov-Smirnov test statistic is calculated as follows 
 

D F x F xn n= −max ( ) ( )  
 
where, 
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F x i n
F x

n

n ( ) /
( )

=
=
=

 the cumulative distribution function of the hypothesized distribution
       the total number of observations in the data

 

 
In Simetar the H0 for the Kolmogorov-Smirnov test is that the data are normally 

distributed.  The parameters of the hypothesized normal distribution, mean and standard 
deviation, are estimated in Simetar using the observed data.  Reject H0 at a level of 
significance α if it the test statistic Dn is greater than the 1-α quantile of the Kolmogorov-
Smirnov tables, which can be found in a statistics textbook. 
 
 In Simetar the Kolmogorov-Smirnov Test for Normality is calculated using the 
function 
 
=NORMKS(Data_Range,Adjusted_KS) 
 
Reference: 
 
 Law, Averill M. and W. David Kelton (1991).  Simulation Modeling and 
Analysis.  New York McGraw-Hill, Incorporated, pg 363-367. 
 
Kurtosis 
 
 Kurtosis is a measure of the density under the peak of a functions probability 
density function.  Kurtosis as calculated as 
 

K
x pi i

i

n

=
−

=
∑ µ

σ

b g4
1

4  

 
It is common to compare Kurtosis values to the Kurtosis of a normal distribution where 
 

K
K
K

=
<
>

3
3
3

  normal distribution
  flatter than a normal distribution
  higher peak than a normal distribution

 

 
Kurtosis is calculated in Simetar using the function 
 
=KURT(Number1,Number2) 
 
Reference: 
 
 Vose, David (2000).  Risk Analysis.  New York John Wiley and Sons, Limited, pg 
35-36. 
 



A44 

 
Shapiro-Wilk Test for Normality 
 
 The Shapiro-Wilk test for normality is a measure of the straightness of the normal 
probability plot.  The Shapiro-Wilk test is calculated as 
 

W
a X X

X X

i
n i i

i

k

i
i

n=
−

L
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− +
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where, 
 

   table value coefficient

th order statistic
   mean
    total number of observations
    approximately 

a

X i
X
n
k n

i

i

=

=

=
=
=

b g

2

 

 
 The H0 for the Shapiro-Wilk Test is that the data are normally distributed.  The H0 
is rejected at the level of significance α if the test statistic W is less than or equal to Wα 
quantile given by a table of quantiles for the Shapiro-Wilk Test statistic. 
 
 In Simetar the Shapiro-Wilk Test is calculated using the function 
 
=NORMSW(Data_Range) 
 
 Conover, W. J. (1999).  Practical Nonparametric Statistics.  New York John 
Wiley and Sons, Incorporated, pg 450-453. 
 
Skewness 
 
 Skewness is a measure of the symmetry of a distribution.  Skewness is calculated 
as 
 

S
x pi i

i

n

=
−

=
∑ µ

σ

b g3
1

3  

 
Skewness values give an indication to the density under the tails of a distribution.  A 
normal distribution has a Skewness of 0 since both the right and left tails of the 
probability distribution function for a normal distribution have the same density.  A 
negative Skewness indicates that a probability distribution function has more density 



A45 

under the left tail than the right and is thus said to be skewed to the left.  A positive 
Skewness indicates that a probability distribution function has more density under the 
right tail than the left and is thus said to be skewed to the right. 
 
Skewness is calculated in Simetar using the function 
 
=SKEW(Number1,Number2) 
 
Reference: 
 
 Vose, David (2000).  Risk Analysis.  New York John Wiley and Sons, Limited, pg 
35-36. 
 
T-test on Mean 
 
 The hypothesis test in Simetar to determine if the sample mean of a data series is 
equal to a hypothesized parameter mean is the t-test.  The t-test is calculated as 
 

t x
s n

=
− µ0  

 
where, 
 

  observed sample mean
hypothesized value for the parameter mean

   observed sample standard deviation
  number of observations

0

x

s
n

=
=
=
=

µ
 

 
 In Simetar the two sided t-test is used with H0 that the sample mean is equal to the 
hypothesized parameter mean.  Reject H0 at a level of significance 1-α if the absolute 
value of the t-test is greater than tn-1,α/2 from the students t distribution. 
 
Reference: 
 

Tamhane, Ajit C. and Dorothy D. Dunlop (2000).  Statistics and Data Analysis 
From Elementary to Intermediate.  Upper Saddle River, New Jersey Prentice Hall, 
Incorporated, pg 252-253. 
 
Two Sample T-test 
 
 The two sample t-test is used to determine whether or not two sets of data have 
statistically different means.  The two sample t-test is calculated as 
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t value X X

n n

− =
−

+

1 2

1
2

1

2
2

2

σ σ
 

 
In Simetar the H0 for the 2 sample t-test is that the sample means of the two data 

series are not statistically different.  Reject H0 at a level of significance α if it the test 
statistic is greater than the 1-α quantile of the student t distribution. 
 
Reference: 
 
 Albright, S. Christian, Wayne L. Winston, and Christopher J. Zappe (2000).  
Managerial Statistics.  Pacific Grove, California Duxbury, pg 447-453. 
 
 
TIME SERIES 
 
 Time Series analysis is a specialized application of the ordinary least squares 
solution to a linear problem.  In time series analysis lagged values of the dependent 
variable are used as explanatory variables to describe the system.  One of the underlying 
principles behind time series analysis is that the historical values of a variable provide a 
means of forecasting the future values of that variable.  When only lagged values of a 
single variable are used in a time series analysis the model is called a univariate time 
series analysis.  A system of time series equations that also uses a priori information is 
called a vector auto regression 
 
Dickey-Fuller Test 
 
 A desirable property for a time series analysis is for the data to be stationary.  A 
series of data yt are said to be stationary if 
 

1. the mean of the data is a finite constant 
 

E y tt = µ     for all  
 

2. the variance of the dada is a finite constant 
 

var y tt yb g = σ 2      for all  
 

3. the covariance of the data for any two lags is a finite constant 
 

cov ,y y E y y tt t k t t k k+ += − − =b g b gb gµ µ γ      for all  
 
The Dickey-Fuller and Augmented Dickey Fuller tests are used to determine if data are 
stationary.  For a time series equation 
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y t yt t t= + + +−α β ρ ε1  

 
the Dickey Fuller test is calculated as follows 
 

∆y t yt t t= + + − +−α β ρ ε1 1b g  
 
where, 
 

∆y y yt t t= − −1  
 
The null hypothesis of the Dickey-Fuller test is that the data series is not stationary or that 
ρa = 1.  Critical values for the Dickey-Fuller test can be found in a book of statistical 
tables.  The Augmented Dickey-Fuller test is used to test if data are stationary for an 
AR(p) process greater than 1.  The Augmented Dickey-Fuller is calculated as 
 

∆ ∆y t y yt t i t i
i

n

t= + + − + +− −
=
∑α β ρ ρ ε1 1

1
b g  

 
In Simetar the Dickey-Fuller test and the Augmented Dickey-Fuller test is calculated 
using the function  
 
=DF(Y_Values,Time_Trend,NumLagDiffs,NumDifferences) 
 
Reference: 
 
 Griffiths, William E., R. Carter Hill, and George G. Judge (1993).  Learning and 
Practicing Econometrics.  New York John Wiley and Sons, Incorporated, pg 697-700. 
 
Exponential Smoothing 
 
 Exponential smoothing is an approach to simple time series forecasting that 
addresses concerns with the moving average model.  A weighted average of the past 
observations is used in exponential smoothing to make projections with more weight 
being given to the most recent information.  The simple exponential smoothing model is 
 

S Y St t t= + − −α α1 1b g  
 
where, 
 

   exonentially smoothed forecast at time 
   observed data point at time 

exonentially smoothed forecast at time 
   smoothing constant

S t
Y t

S t

t

t

t

=
=
= −
=

−1 1
α
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A more complex exponential smoothing model includes a trend value and is specified as 
 

S Y S T

T Y Y T
t t t t

t t t t

= + − +

= − + −
− −

− − − −

α α

β β

1

1
1 1

1 1 2 2

b gb g
b g b g  

 
where, 
 

T t
T t

t

t

−

−

= −
= −
=

1

2

1
2

exponentially smoothed trend at time 
actual trend value at time 

   smoothing constant for the trendβ
 

 
In Simetar Exponential Smoothing is calculated using the function  
 
=EWMA(Data_Range,DampFactor,TrendFactor,No_Forecast) 
 
Reference: 
 
 Albright, S. Christian, Wayne L. Winston, and Christopher J. Zappe (2000).  
Managerial Statistics.  Pacific Grove, California Duxbury, pg 876-887. 
 
Impulse Response Function 
 
 The Impulse Response Function is used in a vector autoregression to determine 
the affects of a shock to the system, i.e. the affect on yt of increasing et by one unit.  
Taking the equations for a two series VAR of order p 
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This system can be shocked in time period 0 to yield 
 

1
0

1 1
1 1

0
0

0
0

1
0

11 12

21 22

11 12

21 22

L
NM
O
QP =
F
HG

I
KJ
L
NM
O
QP+ +
F
HG

I
KJ
L
NM
O
QP +
L
NM
O
QP

φ φ
φ φ

φ φ
φ φ

b g b g
b g b g

b g b g
b g b g
p p
p p

 

 
The system can be moved ahead systematically one time period at a time to determine its 
Impulse Response Function. 
 
In Simetar the Impulse Response Function returns the number of time periods a system 
takes to stabilize.  The Impulse Response Function is calculated using the function  
 
=IMPULSE(Y_Values,Lags,Impulse_Periods,NumDifferences,Error_Correction). 
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Reference: 
 
 Bessler, David A. (1984).  “An Analysis of Dynamic Economic Relationships An 
Application to the U.S. Hog Market.”  Canadian Journal of Agricultural Economics.  32, 
109-124. 
 
Likelihood Ratio Test 
 
 The Likelihood Ratio Test for a vector autoregressive process tests the number of 
lags that should be used in the system.  The Likelihood Ratio Test is calculated as 
 

L k T C k kb g b gc h= − − +ln lnΩ Ω 1  
 
where, 
 

T
C

kk

=
=

=

number of usable observations
small sample correctrion

covariance matrix for the VAR of  lagsΩ
 

 
The null hypothesis for the Likelihood Ratio test is that all parameters at lag k+1 are 
zero.  The null hypothesis is rejected at the level of significance α if it the test statistic is 
greater than the 1-α quantile of the chi-squared distribution 
 
In Simetar the Likelihood Ratio Test is calculated using the function  
 
=LRT(Y_Values,Lags,Constant,NumDifferences,Error_Correction). 
 
Reference: 
 
 Sims, Christopher A. (1980).  “Macroeconomics and Reality.”  Econometrica.  
48, 1-48. 
 
Partial Autocorrelation Coefficient 
 
 The Partial Autocorrelation Coefficient of order k measures the strength of 
correlation among pairs of entries in the time series while removing the effects of all 
autocorrelations below order k.  The Partial Autocorrelation Coefficient is calculated by 
solving the system of Yule-Walker equations 
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where, 
 

ρ
φ

k

kk

=
=

autocorrelation coefficient
partial autocorrelation coefficient

 

 
In Simetar the Partial Autocorrelation Coefficient is calculated using the function  
 
=PAUTOCORR(Y_Values,Lags,NumDifferences). 
 
Reference: 
 
 Box, George P. and Gwilym M. Jenkins (1976).  Time Series Analysis 
Forecasting and Control.  San Francisco Holden-Day, Incorporated, pg 64-65. 
 
Sample Autocorrelation Coefficient 
 
 The Sample Autocorrelation Coefficient measures the dependence times series 
values at one time on the value at another time.  The Autocorrelation Coefficient is 
calculated as 
 

r
x x x x

x xk
t t k

t

=
− −

−
−∑

∑
b gb g
b g2  

 
In Simetar the Sample Autocorrelation Coefficient is calculated using the function  
 
=AUTOCORR(Y_Values,Lags,Differences). 
 
Reference: 
 
 Johnston, Jack and John DiNardo (1997).  Econometric Methods.  New York The 
McGraw-Hill Companies, Incorporated, pg 215-220. 
 
 
OPTIMIZATION 
 
  
 
Golden Section 
 
 The Golden Section algorithm is used to find the optimum of a single variable 
function.  An upper and lower bound must be specified to find the optimum of a function 
using the Golden Section algorithm.  Between these bounds the function must be 
unimodal to insure that the bounded global optimum is found.  Given these criteria the 
Golden Section algorithm uses a ratio of two parts known as the “Golden Section” to 
specify a pair of points between the upper and lower bounds of the function.  Each pair of 
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points is evaluated to determine which point is closer to the optimum.  Based on this 
evaluation the bounds are adjusted and the procedure is repeated until the difference 
between the bounds is zero. 
 The computational procedure used in Simetar to find the maximum of a function 
f(x) using the Golden Section algorithm is outlined as follows 
 
 Define 

   function for which the maximum value will be found
lower bound of ( )
upper bound of ( )

        ,  derived from the golden section

        
         desired precision for the optimum

f x
f X f x
f X f x

L

U

( )
( )
( )

=
=
=

=
−

= −
=

α

β α
ε

3 5
2

1

 

 
Given f(x), XL, XU, and ε 

  

 
 

∆
∆
∆

= −
= + ×
= + ×
=
=

X X
X X
X X
F f X
F f X

U L

L

L

1

2

1 1

2 2

α
β

( )
( )

 

While     ∆ > ε 
If     F1 < F2     Then 

X X
X X

X X
X X
F f X
F f X

L

U L

L

=
=
= −
= + ×
=
=

1

1 2

2

1 1

2 2

  

 
 

∆
∆β

( )
( )

 

  Else 

   

X X
X X

X X
X X
F f X
F f X

U

U L

L

=
=
= −
= + ×
=
=

2

2 1

1

1 1

2 2

  

 
 

∆
∆α

( )
( )

 

  End If 
End While 
If     F1 < F2     Return     X XU + 1 2b g  
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Else                 Return     X XL + 2 2b g  
 
In Simetar the Golden Section optimization is calculated using the function  
 
=OPT(FormulaRef,Constraint,ChangeVariable,LowerOrGuess,UpperBound) 
 
Reference: 
 
 Vanderplaats, Garret N. (1984).  Numerical Optimization Techniques for 
Engineering Design with Applications.  New York McGraw-Hill, Incorporated, pg 41-49. 
 
Newton-Raphson Method 
 
 The Newton-Raphson Method is used to find the root of a single variable 
function.  Motivation for the Newton-Raphson method comes from the Taylor series 
expansion the function f(x) at a point δ. 
 

f x f f
f

+ ≈ + ′ +
′′

+δ δ δ
δ

δb g b g b g b g
2

2  

 
For f(x + δ) = 0 
 

δ = −
′

f x
f x
b g
b g  

 
with this consideration the iterative formula for the Newton-Raphson method is 
 

x x
f x
f xn n

n

n
+ = −

′1
b g
b g  

 
The computational procedure used in Simetar to find the value of a function f(x) 

using the Newton-Raphson method is outlined as follows 
 
 Define 

  

f x

f x

d

b g
b g

=

=

=
=

function for which the root or a specific value will be found

     desired value of 
     initial guess
    x desired precision for the optimum

δ
θ

 

 
 Given f(x), δ, θ, and dx 
  x1 = θ  

Do 
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x x

x x dx

x x dx

f x
f x f x

dx

x x
f x

f x

L

U

U L

0 1

0

0

0

1 0
0

0

2

2

=

= −

= +

′ =
−

= −
−

′

b g b g b g

b g
b g

δ

 

 Loop While     | x1 – x0 | > dx 
 Return     x1 
 
In Simetar the Newton Raphson optimization is calculated using the function  
 
=OPT(FormulaRef,Constraint,ChangeVariable,LowerOrGuess,UpperBound) 
 
Reference: 
 
 Judd, Kenneth L. (1998).  Numerical Methods in Economics.  Cambridge 
Massachusetts The MIT Press, pg 96-97. 
 
 
 




